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ABSTRACT 
Inventory redistribution and emergency replenishment in 
supply chains have long been studied in various contexts. 
From a strategic perspective, lateral transshipments can be 
beneficial for a variety of general supply chains to cope 
with the mismatch between periodic realized demands and 
inventory levels. Similarly, the emergency replenishment 
from supply sources has also been used as a tool to 
mitigate the demand uncertainty. In this paper, we 
consider the integration of instantaneous transshipments 
and emergency shipments in a multi-location inventory 
system consisting of a distribution center, and multiple 
retailers. A mathematical optimization model is 
formulated first, and then an approach based on a 
Stochastic Genetic Algorithm (SGA) is presented to solve 
the model. The objective of the model is to determine 
optimal replenishment policies for the multi-location 
inventory system. A coarse-to-fine procedure is employed 
to reduce the computational time. Finally, computational 
results are given to show the validity of the presented 
approach. 
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1.  Introduction 
 
Multi-location inventory systems have been investigated 
for several decades. The modeling approach of such 
systems is different from classical inventory models in 
that it aims to find inventory policy that is optimal for the 
entire system of multiple locations. As part of the research 
field, the investigation of N-location models with lateral 
transshipment is considered as an important problem for 
both inventory theory and inventory practice. However, 
the multi-location models are generally complex, difficult 
to solve, and also intractable. The complexity of the 
model is increased substantially when the model is 
formulated for capturing real-life situations such as 
stochastic behavior, or considering more dimensions of 

inventory activities. The model cannot be often solved 
using traditional optimization methods.  
 
The structure of multi-locations results in a system with 
multi-direction cooperation. Earlier studies began with the 
idea of centralizing the control of such systems. A 
centralized model with the concept of inventory pooling 
was first presented by Eppen [1]. The model was later 
extended in several studies to handle additional cost 
parameters and constraints. Tagaras [2], [3] considered 
the case of transshipments in a complete pooling where 
the retailers’ cost parameters are identical. Robinson [4] 
examined a general case of multiple locations but with 
different cost structures. Herer [5] proposed multi-
location transshipment models to solve for optimal 
policies using the network flow representation and 
Infinitesimal Perturbation Analysis (IPA) technique. 
Recently, Luo and Wang [6] applied Genetic Algorithm 
(GA) for determining an initial order quantity and the 
transshipment scheme in a complex multiple retailers 
network with different demand and inventory parameters.                     
 
Emergency Orders is one of the widely known options 
that has been used in a similar manner to the 
transshipment. Stocking location can request for another 
replenishment after a regular replenishment. However, the 
retailer may need to pay a higher purchasing cost for the 
replenishment in a very short lead-time. Tagaras and 
Vlachos [7], and Teunter and Vlachos [8] have studied 
systems with the emergency replenishment, and proposed 
periodic inventory models with two supply modes that 
can be used to determine the order-up-to replenishment 
parameters and approximate costs. 
 
Most existing works on transshipment systems normally 
assumed that (1) lateral transshipments within a group of 
retailers are preferred rather than seeking products from 
external suppliers or using other options such as the 
emergency order system [5], [9], [10], (2) facilities are 
located closely in the area and they have potential to 
implement all transshipment activities (i.e., providing 
extra transportation and storage), and (3) locations are not 
completely independent and are willing to share both 
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information and inventories. These assumptions are quite 
conflicting to the general practice in commercial supply 
chains. The facilities may be owned by different 
companies who have joined the supply chain. Some of the 
locations may be located far from each others, and have 
not enough capabilities. Furthermore, the commercial 
network can be designed to transfer products efficiently 
either on the predetermined routes or in the lateral groups. 
Thus, we can see that only the lateral transshipment 
system may not provide the best advantage to commercial 
supply chains.    
 
In this paper, we propose a strategic viewpoint of 
integrating retailers’ lateral transshipments and 
emergency replenishments into the multi-location 
inventory system. We adopted the idea of adding an 
artificial distribution center in the network to integrate 
effectively the emergency ordering with the lateral 
transhipment. A mathematical model representing the 
system is formulated to determine the optimal order-up-to 
replenishment levels for retailers. The Stochastic Genetic 
Algorithm (SGA) approach is applied to the model such 
that the nature of stochastic demand is effectively 
handled. A Coarse-To-Fine approach is also applied to 
assist in the GA model in order to increase accuracy as 
well as reduce the computation time.  
   
The remainder of this paper is organized as follows. The 
following section is devoted to describe the problem, the 
configuration of a distribution network under study, 
modeling assumptions, and model formulation. Solution 
approach is then discussed in Section 3. In Section 4, we 
conduct numerical experiments to show the validity of our 
approach. A final conclusion is made in Section 5.   
 
 
2.  Optimization Model 
 
2.1 Modeling assumptions 
 
Consider a distribution network of one distribution center 
(DC) serving for N retailer locations. A distribution center 
is considered as a supply node that replenishes the amount 
of a single product to retailers. Inventory level at each 
retailer is reviewed periodically and regular 
replenishments can be made after the retailers place their 
order requesting regular replenishments. Within the 
period, demand is observed at each location. Retailers, in 
case of shortage or imminent stock-out, will be able to 
seek additional inventory through the lateral 
transshipment system and/or the emergency ordering 
system. A distribution network with complete inventory 
pooling described above can be structured as shown in 
Figure 1. 
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Figure 1: A Distribution Network Concerned 
 
The following assumptions are set for operations of all 
retailers: 

• A distribution center has sufficient capacity to 
respond to any request from retailers. 

• Retailers face independent demand distribution, 
which is stationary and known for a period. 

• Retailers operate with different cost structure and 
different inventory parameters (i.e., holding 
costs, penalty costs, procurement costs, 
demands) 

• Retailers employ an order-up-to inventory policy 
• Both lateral transshipments and emergency 

replenishments can be carried out within the 
period after the realization of demands at 
retailers.     

• Retailers cannot request more than one 
additional shipment in the same period.   

• Unsatisfied demand is backlogged and will be 
satisfied using the regular replenishment at the 
beginning of the next period. 

 
 
 
 



2.2 Model Formulation 
 
Notation 
The following parameters are used for modeling 
formulation: 
 
 
Cost and Inventory Parameters:  
i, I  =  index and set of retailers where i = 0 implies 
the DC; 
di  =  observed demand of retailer i ;      D = { di  }; 

cij  =  unit cost of lateral transshipment from retailer 
i to retailer j ;  

hi  =  unit cost of holding inventory per period at 
retailer i ; 

pi  =  unit cost of shortage backlogged per period at 
retailer i ;  
 
Decision Variables:  

Si  =  order-up-to level at retailer i ;  S =  { }; Si

xij  =  the amount of the product transshipped from 

retailer i to retailer j ;  X =  { }; xij

I i
+  =  net surplus at retailer i after transshipments 

and demand satisfaction;  

I i
−  =  net shortage at retailer i after transshipments 

and demand satisfaction 
 
Objective function and constraints 
 
The problem will be described as strategic inventory 
planning over a long planning horizon, which aims to 
determine an optimal replenishment policy for retailers 
under the network configuration of complete inventory 
pooling with unlimited supply. The objective of the 
problem is to minimize the total cost of the integrated 
multi-location system. We follow the concept of model 
formulation as discussed in Herer [5], [9]. The similar 
concept has also been simplified and used in the design of 
lateral transshipment networks [11]. As we integrated the 
emergency replenishment system into the previous model, 
we need to deal with the amount of product that flows 
instantaneously from a DC to retailers. An artificial 
retailer is added into the retailer group. This dummy 
retailer represents the function of DC, but acting like a 
retailer who can exchange a lateral transshipment quantity 
with any retailer at a cost of emergency replenishment 
(Figure 2). Thus, one-directional links from the artificial 
retailer to any retailer in the group can represent 
emergency orders. The model in Herer [5] and the 
simplified version of model in Lein [11] are still valid 

here. We then formulate the multi-location inventory 
system which integrates lateral transshipment and 
emergency orders problem as follows: 

 

 
 
 Min

 
 
 
 ∑
 
 
 
 
 
 

X Z(X|S,D) =∑ij ijij xc +∑  (1) )( IpIh iiii i
−+ +

   
subject to 

j ijx - ∑k kix  +  -   =  SI i
+ I i

−
i   - di    ∀i (2) 

  ∑ j ijx  +  ≤  SI i
+

i        ∀i (3) 

   ≥  0          ∀i,j      (4) xij

  ,   ≥  0     ∀i (5) I i
+ I i

−

 

 
 
 
 
 
 
 
 
 
 
 DC  
 
 
 
 
 
 
 
 
 
 
 
 

Artificial retailer representing the DC

Figure 2: An Artificial Retailer in The Multi-Location 
Inventory System 

 
The objective function (1), Minx Z(X | S,D), minimizes 
the total cost of transshipment costs, emergency ordering 
costs, inventory holding and penalty costs. The model 
determines transshipment quantities Xij based on the 
calculation of the total throughput of the system while 
assuming that the demand pattern (di) and replenishment 
policy (Si) are given. Constraint (2) is the control equation 
to guarantee that demand will be satisfied at each retailer 
location. Constraint (3) limits the amount of 
transshipment that could occur in a period. Constraint (4) 
and (5) represent the non-negativity of the decision 
variables.      



3. A Stochastic Genetic Algorithm 
 
3.1 Concept 
 
We intend to solve the model for optimal order-up-to 
level at each retailer under a stochastic behavior. Note 
that Herer [5], [9] has proposed an Infinitesimal 
perturbation Analysis (IPA) procedure for solving his 
model, and Lein [11] also followed the same procedure 
for his simplified model in the design of transshipment 
networks. A different solution methodology, using a 
Stochastic Genetic Algorithm (SGA), is suggested here to 
solve for optimal values of this integrated model. The 
Minx Z(X | S,D) model is now converted into an expected 
value model preparing for the GA optimization under a 
stochastic behavior as follows:  
 
 MinS ED[Z*(X* |S,D)]  (6) 
 
where,  [Z*(X*|S,D)] = MinX  Z(X|S,D)  

Z* = minimum of the total supply cost from the 
objective function (1)   

X* = optimal solutions of the model with 
objective function (1)    
 
The objective function (6), MinS ED[Z*(X* |S,D)], would 
minimize the total expected cost (ED) of the supply chain 
based on the optimal values of Xij that is calculated from 
the objective function (1) with respect to the set of 
constraints. Stochastic nature of retailers’ demand will be 
materialized by randomly generating a set of demand 
patterns. At this stage, the demand values are known, and 
different Si values can also be known while GA 
chromosomes are encoded, the previous formulation in 
Section 2.2 is already reduced into a simple linear 
programming (LP) model. After solving LP for multiple 
sets of optimal Z* and X* that associated with the known 
di and Si values for a specific chromosome, an average of 
Z* values will represent the fitness value (expected total 
cost of the system, ED) for that chromosome. In the 
optimization process using the GA by changing Si values, 
the objective function (6) would finally converge to the 
minimum of the expected total supply chain cost. 
 
Considering that the linear programming sub-model is 
used to evaluate the fitness value of chromosomes, the 
runtime of the LP and the GA routine definitely depends 
on the number of locations, the number of demand 
patterns generating for a chromosome, the number of 
chromosomes in the population, and the number of total 
generations of the GA. It is important to generate enough 
different demand patterns so that the model can mimic the 
stochastic behavior approximately. It is also important to 
set appropriate numbers of populations and generations so 
that the GA can generate more possible solutions 
throughout the search space. We introduced a Coarse-to-

Fine approach to assist the GA model in order to increase 
accuracy as well as reduce the computational time. As the 
generation of the GA goes, the model investigates more 
demand patterns while the number of chromosomes in the 
population is decreased.      
 
3.2 Proposed Genetic Algorithm structure 
 
Chromosome and a fitness value 
Since the objective function (6) is the function of Si 
variables, each chromosome of the GA must be encoded 
with genes representing values of the order-up-to levels 
(Si). Fitness value of an individual chromosome can be 
evaluated by solving a set of problem given in (6) for a set 
of specified values Si in the chromosome. The average of 
LP optimal solutions, ED[Z*], is the fitness value of a 
chromosome. Figure 3 depicted the chromosome 
encoding and the evaluation of fitness value where a total 
of Nd demand patterns are evaluated.                       

Fitness Value  
for Each Demand Pattern  S1 S2 . . . Sn

Avg.  
Fitn. 

Value D1 d2 . . . dNd

15 20 . . . 15 28.3 25.4 37.2 . . . 19.8 
 

Figure 3: Chromosome Encoding and The Evaluation  
of Fitness Value 

 
Genetic Operators  
For crossover operations generating offspring, we use a 
convex crossover operator defined by Sc = αSp1 + (1-α)Sp2, 
where Sc is a new value of Si in an offspring, Sp1 and Sp2 
are the current values in parents, and α is a random 
weight ranged over 0 ≤ α ≤ 1. This convex operator takes 
a weighted average of the Si values of the parents, and 
produces an offspring that lies somewhere on the line 
between the parents.    
 
Genetic Algorithm Procedure 
We have already designed the solution approach including 
2 main procedures of the LP and the GA. The integrated 
optimization process is stated in a procedural form 
follows:  
 
Step 1. Randomly generate an initial population 
containing n chromosomes of S =  { S }.  i
Step 2. Set the population size, psize = n, set Nd = the 
number of generated demand patterns, for each 
chromosome in the population, generate Nd demand 
values as Dij = { di,Nd  }, dij = µi + randn * σi, where j = 
1,2,3,…,Nd, and randn = a random number of Z∼(0,1). 
Note that we have an alternative to maintain the same set 



of generated demand values by resetting a seed number of 
standard normal random numbers Z.   
Step 3. Executing a linear programming routine for the 
minimization of MinX Z(X|S,D) problem, for given sets of 
{S} and {D} associated with each chromosome. 
Repeating the LP routine for all di,Nd , Record {Z*

Nd} for 
the specified chromosome.      
Step 4. Finding an expected value (ED) for a specified 
chromosome, ED = (Σ Z*

Nd)/Nd. The expected value here 
is equivalent to a fitness value of a chromosome, and is 
representing the expected total cost of the system 
operating with the settings of {S} policies under the given 
{D}. 
Step 5. Evaluate the remaining chromosomes by repeating 
step 2-4 throughout psize   
 
After the fitness evaluation process is done for any 
population psize, we can invoke the Genetic Algorithm 
routine for the minimization of MinS ED[Z*(X* |S,D)] 
problem as,  
 
Step 6. Returning a set of fitness values {ED} of n 
chromosomes to the GA routine. 
Step 7. Record the best fitness value ED

* and solutions 
{Si

*} for the current population. 

Step 8. If the stopping condition is met, then the solution 
of MinS ED[Z*(X* |S,D)] problem are ED

* and {Si
*}, End 

the  optimization process. Otherwise, go to step 9. 
Step 9. Set elite offsprings to survive. 
Step 10. Perform a Roulette Wheel Selection [12].  
Step 11. Set α = rand[0,1] (or a predetermined value), and 
operate a convex genetic operator as given by a function, 
Sc = αSp1 + (1-α)Sp2, repeat the crossover process to 
produce a set of offspring which contain {Sc,i}. 
Step 12.  Perform a mutation process to completely fill a 
new population. 
Step 13.  Restart the Genetic Algorithm solution 
procedure by going to Step 2. 
 
 
4.  Experiment Results 
 
To show the validity of the model, the solution approach, 
and the quality of the solutions ED

* and {Si
*}, we have 

solved 4 different hypothetical experiments with different 
settings of parameters. Table 1 depicts the parameter 
settings for experiments. 
 

 
Table 1: Parameter Settings for The Experiments Conducted 

 

DC Art.DC Retailers Distribution Emergency Order Lateral Transshipment

1 N/A 4 Normal 0.3 N/A equal costs,       =10 1 50

1 1 4 Normal 0.3 equal costs,       = 20 equal costs,       =10 1 50

1 1 4 Normal 0.4 equal costs,       = 20 equal costs,       =10 1 50

1 1 4 Normal 0.4 different costs different costs 1 50
         = range [20,50]          = range [10,50]

Demand CharacteristicsLocations Parameter Settings
µσ / hi pi

cij

cij

cij

cij

c j0

c j0

c j0

 
 
 
The genetic algorithm model is programmed in Matlab 
with the use of some built-in functions of Genetic 
Algorithm toolbox. The following criterion is used while 
running the model for validation: 

1) Use the same set of average demand values for all 
experiments. The variance of demand patterns is changed 
for the last two experiments as we focus on the respond of 
the model to the changes in demands.  

2) Neglect some part of a Coarse-To-Fine approach. 
The population size is not varied to reduce the 
computational time but we expedited the optimization 
process by controlling the diversity of chromosomes in 
the initial population. The range of initial population is 
restricted to be close to the average of demands.  

3) The algorithm stops when the value of the fitness 
function for the best point in the current population is 
converged closely to the average of the fitness values and 
stall for some consecutive generations.   
 
Experiment (1) is a base model without the integrated 
emergency ordering system, which will be used as a 
benchmark. This experiment case represents the multi-
location inventory system with lateral transshipment that 
is similar to the models in [5], [6]. Holding costs (hi) and 
shortage penalty costs (pi) are set to 1 and 50, respectively 
to reflect that the shortages are expensive and product 
shipment is preferred. The same lateral transshipment 
costs and emergency ordering cost are used in the first 



three experiments so that the changes in the expected total 
cost and policies {S} can be easily observed. The 
realization of demand in experiment (3) and (4) is made 
stochastically by varying the ratio of σ/µ so that these 
experiments can represent the integrated system under 
different conditions. Finally, in experiment (4), the 
purchasing costs for lateral transshipments and emergency 
orders are given as random values within in the 
predetermined ranges.                
 
The results for the 4 experiments are summarized in table 
2, which gives the final values of ED

* and Si
*, that are 

rounded to the closet integers. 
 

Table 2: Experiment Results 
 

Expected
Exp. Cost S1 S2 S3 S4

(250) (350) (150) (550)
1 721 364 522 213 704
2 588 336 528 208 695
3 779 353 547 227 720
4 934 403 574 254 934

Order-Up-To policies {S}

(average demand)

 
 
With the presence of the emergency ordering system, we 
can expect that the results from our model should show 
the reduction in the total cost as well as the improvement 
in the order-up-to levels. Cost comparison of experiment 
case (1) and (2) shows that both the overall expected cost 
and the order-up-to levels at retailers decrease. The results 
match with the conclusion by Tagaras [7] that the 
emergency replenishment can improve the performance of 
a periodic review inventory system. If we focus on the 
respond of our model to any changes in the demand 
pattern, the results of experiment (3) indicates that the 
model could determine the optimal stocking levels {S*} 
which are increased as the uncertainty in demands 
increases. The result complies with the inventory practice 
that the retailers require more stock when the demand is 
fluctuated. The expected total cost is also higher when 
extra shipments are preferred. This can be explained by 
the expression ∑ijcij⋅xij in the objective function (1) that 
stands for additional cost when the emergency order is 
transferred from the artificial retailer (i = 0). When 
comparing the same results with the benchmark case (1), 
it can be claimed that the network with integrated 
emergency ordering system could perform better with 
similar settings of {S} under high demand uncertainty. It 
is shown here that the model could adjust the optimal 
values of {S*} and ED

* for the proposed system under 
different operating conditions. The parameter settings of 
experiment (4) are set to reflect the real-life situation that 
the stocking locations operate under different demand and 
cost parameters. As we integrated two alternative 
shipment systems, the model would allocate the additional 

supply based on the retailer operating costs and the 
availability of product. The results of experiment (4) 
shows a higher optimal cost (ED

*), and the model adjusted 
new optimal replenishment levels of inventory {S*} for all 
retailers based on the values of {Cij} and demand patterns.   
 
Finally, we illustrate clearly the convergence of our 
genetic algorithm for the experiment (4) in Figure 4. Note 
that, a set of dots that forms the bottom line in the plot 
represents the best expected cost value (ED) of 
chromosomes in each generation.     
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Figure 4: The Convergence of The Genetic Algorithm 

Optimization Process 
 
 
5.  Conclusion 
 
In this paper, we present a multi-location inventory 
system where both lateral transshipments and emergency 
replenishments are allowed. We first investigate the 
possibility to consider the emergency replenishment in the 
inventory control decision, and then formulate a 
mathematical model for the determination of the optimal 
order-up-to replenishment policies in such system. We 
propose the solution approach which is the combination 
of two optimization procedures: a genetic algorithm 
model and a linear programming sub-model. It is found 
that the optimal solutions can be easily determined under 
the stochastic behavior. The future research based on our 
multi-location inventory model would be the 
incorporation of capacity constraints for a capacitated 
system, and the extension to the network design problem.       
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